文章目录
  1. 1. 前言
  2. 2. iOS编译
    1. 2.1. 编译器前端
    2. 2.2. 编译器后端
  3. 3. 执行一次Xcode build的流程
  4. 4. IPA包的内容
  5. 5. 二进制文件的内容
    1. 5.1. Object files
    2. 5.2. Sections
    3. 5.3. Symbols
  6. 6. dSYM 文件
  7. 7. 那些你想到和想不到的应用场景
    1. 7.1. __attribute__
    2. 7.2. Clang警告处理
    3. 7.3. 预处理
    4. 7.4. 插入脚本
    5. 7.5. 脚本编译打包
    6. 7.6. 提高项目编译速度
      1. 7.6.1. 查看编译时间
      2. 7.6.2. 代码层面的优化
        1. 7.6.2.1. forward declaration
        2. 7.6.2.2. 对常用的工具类进行打包(Framework/.a)
        3. 7.6.2.3. 常用头文件放到预编译文件里
      3. 7.6.3. 编译器选项优化
        1. 7.6.3.1. Debug模式下,不生成dsym文件
        2. 7.6.3.2. Debug开启Build Active Architecture Only
        3. 7.6.3.3. Debug模式下,关闭编译器优化
  8. 8. 后续

前言

一般可以将编程语言分为两种,编译语言直译式语言

像C++,Objective C都是编译语言。编译语言在执行的时候,必须先通过编译器生成机器码,机器码可以直接在CPU上执行,所以执行效率较高。

JavaScript,Python都是直译式语言。直译式语言不需要经过编译的过程,而是在执行的时候通过一个中间的解释器将代码解释为CPU可以执行的代码。所以,较编译语言来说,直译式语言效率低一些,但是编写的更灵活,也就是为啥JS大法好。

iOS开发目前的常用语言是:ObjectiveSwift。二者都是编译语言,换句话说都是需要编译才能执行的。二者的编译都是依赖于Clang + LLVM. 篇幅限制,本文只关注Objective C,因为原理上大同小异。

可能会有同学想问,我不懂编译的过程,写代码也没问题啊?这点我是不否定的。但是,充分理解了编译的过程,会对你的开发大有帮助。本文的最后,会以以下几个例子,来讲解如何合理利用Xcode和编译

  • __attribute__
  • Clang警告处理
  • 预处理
  • 插入编译期脚本
  • 提高项目编译速度

对于不想看我啰里八嗦讲一大堆原理的同学,可以直接跳到本文的最后一个章节。

iOS编译

不管是OC还是Swift,都是采用Clang作为编译器前端,LLVM(Low level vritual machine)作为编译器后端。所以简单的编译过程如图

编译器前端

编译器前端的任务是进行:语法分析,语义分析,生成中间代码(intermediate representation )。在这个过程中,会进行类型检查,如果发现错误或者警告会标注出来在哪一行。

编译器后端

编译器后端会进行机器无关的代码优化,生成机器语言,并且进行机器相关的代码优化。iOS的编译过程,后端的处理如下

  • LVVM优化器会进行BitCode的生成,链接期优化等等。
  • LLVM机器码生成器会针对不同的架构,比如arm64等生成不同的机器码。

执行一次Xcode build的流程

当你在Xcode中,选择build的时候(快捷键command+B),会执行如下过程

  • 编译信息写入辅助文件,创建编译后的文件架构(name.app)
  • 处理文件打包信息,例如在debug环境下
1
2
3
4
5
Entitlements:
{
"application-identifier" = "app的bundleid";
"aps-environment" = development;
}
  • 执行CocoaPod编译前脚本
    例如对于使用CocoaPod的工程会执行CheckPods Manifest.lock
  • 编译各个.m文件,使用CompileC和clang命令。
1
2
3
4
CompileC ClassName.o ClassName.m normal x86_64 objective-c com.apple.compilers.llvm.clang.1_0.compiler
export LANG=en_US.US-ASCII
export PATH="..."
clang -x objective-c -arch x86_64 -fmessage-length=0 -fobjc-arc... -Wno-missing-field-initializers ... -DDEBUG=1 ... -isysroot iPhoneSimulator10.1.sdk -fasm-blocks ... -I 上文提到的文件 -F 所需要的Framework -iquote 所需要的Framework ... -c ClassName.c -o ClassName.o

通过这个编译的命令,我们可以看到

1
2
3
4
5
6
7
8
9
10
11
clang是实际的编译命令
-x objective-c 指定了编译的语言
-arch x86_64制定了编译的架构,类似还有arm7等
-fobjc-arc 一些列-f开头的,指定了采用arc等信息。这个也就是为什么你可以对单独的一个.m文件采用非ARC编程。
-Wno-missing-field-initializers 一系列以-W开头的,指的是编译的警告选项,通过这些你可以定制化编译选项
-DDEBUG=1 一些列-D开头的,指的是预编译宏,通过这些宏可以实现条件编译
-iPhoneSimulator10.1.sdk 制定了编译采用的iOS SDK版本
-I 把编译信息写入指定的辅助文件
-F 链接所需要的Framework
-c ClassName.c 编译文件
-o ClassName.o 编译产物
  • 链接需要的Framework,例如Foundation.framework,AFNetworking.framework,ALiPay.fframework
  • 编译xib文件
  • 拷贝xib,图片等资源文件到结果目录
  • 编译ImageAssets
  • 处理info.plist
  • 执行CocoaPod脚本
  • 拷贝Swift标准库
  • 创建.app文件和对其签名

IPA包的内容

例如,我们通过iTunes Store下载微信,然后获得ipa安装包,然后实际看看其安装包的内容。

  • 右键ipa,重命名为.zip
  • 双击zip文件,解压缩后会得到一个文件夹。所以,ipa包就是一个普通的压缩包。
  • 右键图中的 WeChat,选择显示包内容,然后就能够看到实际的ipa包内容了。

二进制文件的内容

通过Xcode的Link Map File,我们可以窥探二进制文件中布局。

在Xcode -> Build Settings -> 搜索map -> 开启Write Link Map File

开启后,在编译,我们可以在对应的Debug/Release目录下看到对应的link map的text文件。

默认的目录在

1
~/Library/Developer/Xcode/DerivedData/<TARGET-NAME>-对应ID/Build/Intermediates/<TARGET-NAME>.build/Debug-iphoneos/<TARGET-NAME>.build/

例如,我的TargetName是EPlusPan4Phone,目录如下

1
/Users/huangwenchen/Library/Developer/Xcode/DerivedData/EPlusPan4Phone-eznmxzawtlhpmadnbyhafnpqpizo/Build/Intermediates/EPlusPan4Phone.build/Debug-iphonesimulator/EPlusPan4Phone.build

这个映射文件的主要包含以下部分:

Object files

这个部分包括的内容:

  • .o 文文件,也就是上文提到的.m文件编译后的结果。
  • .a文件
  • 需要link的framework
1
2
3
4
5
6
7
8
#! Arch: x86_64
#Object files:
[0] linker synthesized
[1] /EPlusPan4Phone.build/EPlusPan4Phone.app.xcent
[2]/EPlusPan4Phone.build/Objects-normal/x86_64/ULWBigResponseButton.o
[1175]/UMSocial_Sdk_4.4/libUMSocial_Sdk_4.4.a(UMSocialJob.o)
[1188]/iPhoneSimulator10.1.sdk/System/Library/Frameworks//Foundation.framework/Foundation

这个区域的存储内容比较简单:前面是文件的编号,后面是文件的路径。文件的编号在后续会用到

Sections

这个区域提供了各个段(Segment)和节(Section)在可执行文件中的位置和大小。这个区域完整的描述克可执行文件中的全部内容。

其中,段分为两种:

  • __TEXT 代码段
  • __DATA 数据段

例如,之前写的一个App,Sections区域如下,可以看到,代码段的

__text节的地址是0x1000021B0,大小是0x0077EBC3,而二者相加的下一个位置正好是__stubs的位置0x100780D74。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# Sections:
# 位置 大小 段 节
# Address Size Segment Section
0x1000021B0 0x0077EBC3 __TEXT __text //代码
0x100780D74 0x00000FD8 __TEXT __stubs
0x100781D4C 0x00001A50 __TEXT __stub_helper
0x1007837A0 0x0001AD78 __TEXT __const //常量
0x10079E518 0x00041EF7 __TEXT __objc_methname //OC 方法名
0x1007E040F 0x00006E34 __TEXT __objc_classname //OC 类名
0x1007E7243 0x00010498 __TEXT __objc_methtype //OC 方法类型
0x1007F76DC 0x0000E760 __TEXT __gcc_except_tab
0x100805E40 0x00071693 __TEXT __cstring //字符串
0x1008774D4 0x00004A9A __TEXT __ustring
0x10087BF6E 0x00000149 __TEXT __entitlements
0x10087C0B8 0x0000D56C __TEXT __unwind_info
0x100889628 0x000129C0 __TEXT __eh_frame
0x10089C000 0x00000010 __DATA __nl_symbol_ptr
0x10089C010 0x000012C8 __DATA __got
0x10089D2D8 0x00001520 __DATA __la_symbol_ptr
0x10089E7F8 0x00000038 __DATA __mod_init_func
0x10089E840 0x0003E140 __DATA __const //常量
0x1008DC980 0x0002D840 __DATA __cfstring
0x10090A1C0 0x000022D8 __DATA __objc_classlist // OC 方法列表
0x10090C498 0x00000010 __DATA __objc_nlclslist
0x10090C4A8 0x00000218 __DATA __objc_catlist
0x10090C6C0 0x00000008 __DATA __objc_nlcatlist
0x10090C6C8 0x00000510 __DATA __objc_protolist // OC协议列表
0x10090CBD8 0x00000008 __DATA __objc_imageinfo
0x10090CBE0 0x00129280 __DATA __objc_const // OC 常量
0x100A35E60 0x00010908 __DATA __objc_selrefs
0x100A46768 0x00000038 __DATA __objc_protorefs
0x100A467A0 0x000020E8 __DATA __objc_classrefs
0x100A48888 0x000019C0 __DATA __objc_superrefs // OC 父类引用
0x100A4A248 0x0000A500 __DATA __objc_ivar // OC iar
0x100A54748 0x00015CC0 __DATA __objc_data
0x100A6A420 0x00007A30 __DATA __data
0x100A71E60 0x0005AF70 __DATA __bss
0x100ACCDE0 0x00053A4C __DATA __common

Symbols

Section部分将二进制文件进行了一级划分。而,Symbols对Section中的各个段进行了二级划分,
例如,对于__TEXT __text,表示代码段中的代码内容。

1
0x1000021B0 0x0077EBC3 __TEXT __text //代码

而对应的Symbols,起始地址也是0x1000021B0。其中,文件编号和上文的编号对应

1
[2]/EPlusPan4Phone.build/Objects-normal/x86_64/ULWBigResponseButton.o

具体内容如下:

1
2
3
4
5
6
7
# Symbols:
地址 大小 文件编号 方法名
# Address Size File Name
0x1000021B0 0x00000109 [ 2] -[ULWBigResponseButton pointInside:withEvent:]
0x1000022C0 0x00000080 [ 3] -[ULWCategoryController liveAPI]
0x100002340 0x00000080 [ 3] -[ULWCategoryController categories]
....

到这里,我们知道OC的方法是如何存储的,我们再来看看ivar是如何存储的。

首先找到数据栈中__DATA __objc_ivar

1
0x100A4A248 0x0000A500 __DATA __objc_ivar

然后,搜索这个地址0x100A4A248,就能找到ivar的存储区域。

1
0x100A4A248 0x00000008 [ 3] _OBJC_IVAR_$_ULWCategoryController._liveAPI

值得一提的是,对于String,会显式的存储到数据段中,例如,

1
0x1008065C2 0x00000029 [ 11] literal string: http://sns.whalecloud.com/sina2/callback

所以,若果你的加密Key以明文的形式写在文件里,是一件很危险的事情。

dSYM 文件

我们在每次编译过后,都会生成一个dsym文件。dsym文件中,存储了16进制的函数地址映射

在App实际执行的二进制文件中,是通过地址来调用方法的。在App crash的时候,第三方工具(Fabric,友盟等)会帮我们抓到崩溃的调用栈,调用栈里会包含crash地址的调用信息。然后,通过dSYM文件,我们就可以由地址映射到具体的函数位置。

Xcode中,选择Window -> Organizer可以看到我们生成的archier文件

然后:

  • 右键 -> 在finder中显示。
  • 右键 -> 查看包内容。

关于如何用dsym文件来分析崩溃位置,可以查看我之前的一篇博客。

那些你想到和想不到的应用场景

__attribute__

或多或少,你都会在第三方库或者iOS的头文件中,见到过attribute。

比如:

1
__attribute__ ((warn_unused_result)) //如果没有使用返回值,编译的时候给出警告

__attribtue__ 是一个高级的的编译器指令,它允许开发者指定更更多的编译检查和一些高级的编译期优化。

分为三种:

  • 函数属性 (Function Attribute)
  • 类型属性 (Variable Attribute )
  • 变量属性 (Type Attribute )
  • 语法结构

__attribute__ 语法格式为:__attribute__ ((attribute-list)) 放在声明分号“;”前面。

比如,在三方库中最常见的,声明一个属性或者方法在当前版本弃用了

1
@property (strong,nonatomic)CLASSNAME * property __deprecated;

这样的好处是:给开发者一个过渡的版本,让开发者知道这个属性被弃用了,应当使用最新的API,但是被__deprecated的属性仍然可以正常使用。如果直接弃用,会导致开发者在更新Pod的时候,代码无法运行了。

__attribtue__的使用场景很多,本文只列举iOS开发中常用的几个:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
//弃用API,用作API更新
#define __deprecated __attribute__((deprecated))
//带描述信息的弃用
#define __deprecated_msg(_msg) __attribute__((deprecated(_msg)))
//遇到__unavailable的变量/方法,编译器直接抛出Error
#define __unavailable __attribute__((unavailable))
//告诉编译器,即使这个变量/方法 没被使用,也不要抛出警告
#define __unused __attribute__((unused))
//和__unused相反
#define __used __attribute__((used))
//如果不使用方法的返回值,进行警告
#define __result_use_check __attribute__((__warn_unused_result__))
//OC方法在Swift中不可用
#define __swift_unavailable(_msg) __attribute__((__availability__(swift, unavailable, message=_msg)))

Clang警告处理

你一定还见过如下代码:

1
2
3
4
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wundeclared-selector"
///代码
#pragma clang diagnostic pop

这段代码的作用是

  1. 对当前编译环境进行压栈
  2. 忽略-Wundeclared-selector(未声明的)Selector警告
  3. 编译代码
  4. 对编译环境进行出栈

通过clang diagnostic push/pop,你可以灵活的控制代码块的编译选项。

我在之前的一篇文章里,详细的介绍了Xcode的警告相关内容。本文篇幅限制,就不详细讲解了。

预处理

所谓预处理,就是在编译之前的处理。预处理能够让你定义编译器变量,实现条件编译。

比如,这样的代码很常见

1
2
3
4
5
#ifdef DEBUG
//...
#else
//...
#endif

同样,我们同样也可以定义其他预处理变量,在Xcode-选中Target-build settings中,搜索proprecess。然后点击图中蓝色的加号,可以分别为debug和release两种模式设置预处理宏。

比如我们加上:TestServer,表示在这个宏中的代码运行在测试服务器

然后,配合多个Target(右键Target,选择Duplicate),单独一个Target负责测试服务器。这样我们就不用每次切换测试服务器都要修改代码了。

1
2
3
4
5
#ifdef TESTMODE
//测试服务器相关的代码
#else
//生产服务器相关代码
#endif

插入脚本

通常,如果你使用CocoaPod来管理三方库,那么你的Build Phase是这样子的:

其中:[CP]开头的,就是CocoaPod插入的脚本。

  • Check Pods Manifest.lock,用来检查cocoapod管理的三方库是否需要更新
  • Embed Pods Framework,运行脚本来链接三方库的静态/动态库
  • Copy Pods Resources,运行脚本来拷贝三方库的资源文件

而这些配置信息都存储在这个文件(.xcodeprog)里

到这里,CocoaPod的原理也就大致搞清楚了,通过修改xcodeproject,然后配置编译期脚本,来保证三方库能够正确的编译连接。

同样,我们也可以插入自己的脚本,来做一些额外的事情。比如,每次进行archive的时候,我们都必须手动调整target的build版本,如果一不小心,就会忘记。这个过程,我们可以通过插入脚本自动化。

1
2
3
buildNumber=$(/usr/libexec/PlistBuddy -c "Print CFBundleVersion" "${PROJECT_DIR}/${INFOPLIST_FILE}")
buildNumber=$(($buildNumber + 1))
/usr/libexec/PlistBuddy -c "Set :CFBundleVersion $buildNumber" "${PROJECT_DIR}/${INFOPLIST_FILE}"

这段脚本其实很简单,读取当前pist的build版本号,然后对其加一,重新写入。

使用起来也很简单:

  • Xcode - 选中Target - 选中build phase
  • 选择添加Run Script Phase
  • 然后把这段脚本拷贝进去,并且勾选Run Script Only When installing,保证只有我们在安装到设备上的时候,才会执行这段脚本。重命名脚本的名字为Auto Increase build number
  • 然后,拖动这个脚本的到Link Binary With Libraries下面

脚本编译打包

脚本化编译打包对于CI(持续集成)来说,十分有用。iOS开发中,编译打包必备的两个命令是:

1
2
3
4
5
6
7
8
//编译成.app
xcodebuild -workspace $projectName.xcworkspace -scheme $projectName -configuration $buildConfig clean build SYMROOT=$buildAppToDir
//打包
xcrun -sdk iphoneos PackageApplication -v $appDir/$projectName.app -o $appDir/$ipaName.ipa
//通过info命令,可以查看到详细的文档
info xcodebuild

提高项目编译速度

通常,当项目很大,源代码和三方库引入很多的时候,我们会发现编译的速度很慢。在了解了Xcode的编译过程后,我们可以从以下角度来优化编译速度:

查看编译时间

我们需要一个途径,能够看到编译的时间,这样才能有个对比,知道我们的优化究竟有没有效果。

对于Xcode 8,关闭Xcode,终端输入以下指令

1
$ defaults write com.apple.dt.Xcode ShowBuildOperationDuration YES

然后,重启Xcode,然后编译,你会在这里看到编译时间。


代码层面的优化


forward declaration

所谓forward declaration,就是@class CLASSNAME,而不是#import CLASSNAME.h。这样,编译器能大大提高#import的替换速度。

对常用的工具类进行打包(Framework/.a)

打包成Framework或者静态库,这样编译的时候这部分代码就不需要重新编译了。

常用头文件放到预编译文件里

Xcode的pch文件是预编译文件,这里的内容在执行Xcode build之前就已经被预编译,并且引入到每一个.m文件里了。

编译器选项优化


Debug模式下,不生成dsym文件

上文提到了,dysm文件里存储了调试信息,在Debug模式下,我们可以借助Xcode和LLDB进行调试。所以,不需要生成额外的dsym文件来降低编译速度。

Debug开启Build Active Architecture Only

在Xcode -> Build Settings -> Build Active Architecture Only 改为YES。这样做,可以只编译当前的版本,比如arm7/arm64等等,记得只开启Debug模式。这个选项在高版本的Xcode中自动开启了。

Debug模式下,关闭编译器优化

后续

本来这篇文章还有很多内容想写,篇幅限制,就先这样吧。最近发生了很多不开心的事,这里提醒自己一句:吃一堑,长一智。

后面有时间了,会介绍一些编译期黑科技:

  • 写入额外的编译信息
  • 函数的调用过程和运行时找到函数在二进制文件中的的地址
  • ……


转载自:http://blog.csdn.net/hello_hwc/article/details/53557308#t13